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Analysis of Nonstationary, Gaussian and Non-Gaussian, 
Generalized Langevin Equations Using Methods of 
Multiplicative Stochastic Processes 

Ronald Forrest Fox  1 
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Using the methods of multiplicative stochastic processes, a thorough 
analysis of "non-Markovian," generalized Langevin equations is presented. 
For the Gaussian case, these methods are used to show that the non- 
stationary Fokker-Planck equation already found by Adelman and others 
is also obtainable from van Kampen's lemma for stochastic probability 
flows. Here, results applicable to an arbitrary n-component process are 
obtained and the specific two-component case of the Brownian harmonic 
oscillator is presented in detail in order to explicitly exhibit the matrix 
algebraic methods. The non-Gaussian case is presented at the end of the 
paper and shows that the methods already used in the Ganssian case lead 
directly to results for the non-Gaussian case. In order to use the methods 
of multiplicative stochastic processes analysis, it is necessary to transform 
the "non-Markovian," generalized Langevin equation using a stochastic 
extension of a transformation discussed by Adelman. This transformation 
removes the "memory kernel" term i n  the usual generalized Langevin 
equation and in the Gaussian case leads to the result that the original 
process was in fact not "non-Markovian" but actually nonstationary, 
Markovian. 

KEY WORDS: Nonstationary; Gaussian; Markov process; generalized 
Langevin equation; multiplicative stochastic process. 

1. I N T R O D U C T I O N  

In  this paper, the relat ionship between the generalized Langevin equat ion  

and the Fokke r -P l anck  equat ion  for the time evolut ion of  the condi t ional  
probabi l i ty  dis t r ibut ion is elucidated. A method is exhibited which provides 

the results already obta ined by Ade lman  ~1~ for the special case in which the 
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stochastic driving force is Gaussian. This method has the virtue that it 
directly leads to the corresponding results for the non-Gaussian case, and 
thereby provides the general and definitive treatment Adelman discussed in 
the summary of his paper. 

The method to be applied in this paper utilizes ordered cumulants, (2,3~ 
which were developed for the theory of multiplicative stochastic processes. ~4~ 
The generalized Langevin equation is an additive stochastic process and 
has been treated and derived with projection operator techniques. (s,6~ 
Consequently, this paper will serve to illustrate the relationship between 
additive and multiplicative stochastic processes as well as to illustrate the 
alternative advantages of projection operator and cumulant techniques. 
While this last point has been discussed in the recent literature, ~7̀s~ this 
paper provides a detailed account of the relative merits of the methods in the 
explicit solution to the problem of finding the conditional probability distribu- 
tion for generalized Langevin equations. 

Two lemmas will be presented which are necessary in order to implement 
the program presented in this paper. The first lemma follows from the 
discussion in Section V of Adelman's paper, ~1~ and shows that the "memory 
kernel" of the generalized Langevin equation can always be transformed into 
a term without "memory." The second lemma was proved by van Kampen C9~ 
and involves stochastic probability flows, which were discussed somewhat 
earlier by Fox, ~1~ but without the proof provided by van Kampen. 2 

In Section 2 of this paper, the generalized Langevin equation will be 
presented and briefly reviewed. A stochastic generalization of the Adelman 
transformation will be introduced in order to eliminate the "memory 
kernel." In Section 3, a related stochastic probability flow will be introduCed, 
and van Kampen's lemma will be used to show that the stochastic average of 
the probability flow leads directly to the conditional probability distribution 
equation, which will be referred to as the Fokker-Planck equation. In 
Section 4, a second example, the Brownian oscillator, will be presented in 
order to exhibit the fact that the methods used apply equally well to multi- 
component equations. In Section 5, a discussion of the non-Gaussian 
generalization is given, and provides the solution Adelman C1~ desired. 

2. G E N E R A L I Z E D  L A N G E V I N  E Q U A T I O N  

The generalized Langevin equation provides a "non-Markovian" 
extension of Langevin's equation for Brownian motion. The equation is, in 
one dimension, 

d 
u( t )  = -- fl(t - s ) u ( s ) ( I s  + m f ( t )  (1) 

dt  

2 See references in Fox C1~ to Ryogo Kubo, who used these ideas earliest, but also 
without proof. 
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in which u(t) is the velocity of the Brownian particle at time t, m is its mass, 
f l ( t -  s) is the dissipative "memory kernel," and f ( t )  is the stochastic 
driving force, f ( t )  is assumed to have zero mean, which is denoted by 
( f ( t ) )  = 0, and has a variance given by ~6'11~ 

( f ( t ) f ( s ) )  = KsTrn~(t - s) (2) 

in which KB is Boltzmann's constant and T is the temperature. In order to 
specify the higher order moments o f f ( t ) ,  it is necessary to be more specific 
about what kind of process f ( t )  actually is. Usually, it is assumed to be 
Gaussian, although this is never proved on the basis of a truly microscopic 
theory. If  fl(t - s) = 2fl~(t - s), in which ~(t) denotes the Dirac delta 
function, then (1) and (2) correspond to the Markovian Langevin equationJ 12~ 
The restriction to one dimension is not necessary and is made here in order 
to most clearly exhibit the nature of the mathematics, and in Section 4 a 
two-component equation will be treated to illustrate the extension to multi- 
component cases. Equation (2) is called the fluctuation-dissipation relation 
because it couples the variance of the stochastic force to the strength of the 
dissipative memory kernel. 

The solution to (1) is obtained by introducing the Laplace transform of 
fl(r), which is denoted by fl(z) and defined by 

~0 ~176 
~(z) = e-~/3(7) d r  (3) 

Using x(t), which is defined through its Laplace transform, which is 

2(z) = [z +/] (z)] - I  (4) 

we obtain the solution for u(t) as 

u(t) = x(t)u(O) + m x(t - s ) f ( s )  ds and X(0) = 1 (5) 

All of this is well known and has appeared in the literature many times. 
By stochastically extending a transformation introduced by Adelman, ~1~ 

it is possible to convert (1) into an equivalent equation without a memory 
kernel. From (5) it follows that 

1 u(O) = ~-(i~ [u(t) - l f~x(t - s)f(s) ds ] (6) 

and that 

d u ( t )  = d 1 d f f  -~ ~ x(t)u(O) + m-di x(t - s)f(s) ds (7) 
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Using (6) in (7), we obtain 

d (d/dt)x(t). ,t ~ 1 d f j  X( s) f (s)  

= - ~ ( t ) u ( t )  + g(t)  (8) 

in which the second equality defines both/3(t) and g(t). Note that (g ( t ) )  = 0. 
This transformation will be called Adelman's lemma. 

Two points are worth emphasizing at this stage. Because Eq. (8) is a 
single time equation, without a memory kernel, it may be suspected that the 
original "non-Markovian"  process is actually Markovian after all. This 
point will be expanded upon later, and at the end of the paper. Second, the 
objection may be raised that x(t) can become zero and then negative, <la) so 
that division by x(t) when it is zero is not defined. Note, however, that if the 
average of (8) is considered 

"-di (u(t)) = N In x(t) (u(t)) (9) 

then its solution is 

 f0'[ ]} (u(t)) = exp ~ In X(s) ds (u(0)) = x(t)(u(O)) (10) 

which agrees with (5) and demonstrates that the division by zero does not 
in fact introduce extraneous behavior. Later, it will be seen that the variance 
of u(t) also behaves correctly even if x(t) is allowed to become negative. 

In Adelman's C1~ use of the transformation of (1) into (8), no discussion 
of the stochastic driving force ~(t) appeared. Here, it will be seen to be of 
great importance in the subsequent sections. 

3. S T O C H A S T I C  PROBABIL ITY  F L O W S  

Associated with Eq. (8) and the initial condition u(t = 0) = u(0) is the 
conditional probability distribution P(u, t), which is conditioned by the 
initial condition: P(u, O) = 3(u - u(0)). Also associated with (8) is a "phase 
space" description in which p(u, t) denotes a density of phase space points 
at time t determined from the initial density p(u, 0) by the equation of motion 
(8). Because this phase space density is conserved, it satisfies a continuity 
equation, which is 

0 0 
e5 p(u, t) = - Uuu [up(u, t)] (11) 
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in which ~ denotes (d/dt)u and which becomes 

__8~t p(u, t) = - ~u {[-fl(t)u + ~,(t)]p(u, t)} (12) 

when (8) is used. The presence of g(t) in (12) makes (1) a multiplicative 
stochastic process (4,9) and ordered cumulant methods may be used to 
determine <p(u, t)>. van Kampen (9~ has proved that under the conditions 
stipulated above, <p(u, t)> =-P(u, t). This will be called van Kampen's 
lemma. 

The utility of van Kampen's lemma is that it provides a method for 
obtaining the conditional probability distribution for an equation such as 
(8), or equivalently, it enables one to obtain the corresponding Fokker- 
Planck equation. In order to use this lemma, however, it was essential that 
the Adelman transformation be performed in order that the "non-Marko- 
vian," generalized Langevin equation be in a form suitable for application of 
multiplicative stochastic process methods. 

The following, somewhat lengthy, computations will provide the 
Fokker-Planck equation for <p(u, t)> = P(u, t). In order to make the 
presentation as intelligible as possible, it will initially be assumed that 
f(t) in (1) is Gaussian. As a consequence, the result obtained for P(u, t) will 
be identical with the result already presented by Adelman and others. (1) 
However, in Section 5 the non-Gaussian extension will be elucidated. 

Define ~(u, t) by the "interaction picture" 

p(u, t ) -  exp -~uU ~ d s  ~(u,t) = exp - ~ u u l n x ( t )  ~(u,t) 

(13) 
~b(u, t) satisfies 

t%(u,t) = -  exp ulnx(t)  g(t) exp - ~ u u l n x ( t )  ~(u,t) (14) 

Ident i ty  1 : 

Proof: 

l_a[, _ 
(15) 
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Fu ~(t) 

= ~(t) .=o ~ [In x(t)] '~ u , .  --~u 

1 x(t)]"(- 1) '~ = g(t) ~ ~ [ln 

= g(t) exp[ - ln  x(t)] ~u 

1 8 
= g(t)  x(t) eu 

= l  d f lx(t~t)x) f(s)dx-fu (16) 

In line three of the proof, [(~/Ou)u, �9 ]~ denotes the nth power or iteration of 
the commutator operator [(~/~u)u, �9 ], which is to act on the operator ~/~u to 
the right. It is easily verified that [(~/Su)u, �9 ]~ 8/~u = ( -  l) ~ ~/~u, which has 
been used to get from line three to line four. The last line follows from (8). 

Therefore, (14) becomes 

~-/~(u, t) = x( ds ~(u, t) (17) mdt 

Because ( f ( t ))  = 0 for all t, and becausef(t)  is assumed to be Gaussian at 
this stage, ordered cumulant methods (~) provide an exact result involving 
only the second cumulant, which gives for the average of (o(u, t) 

f.t d ~,t d s 
~ (r t)) = Jo ds'~ Jo dt' ~, fo ds' 

x(t t ') X(s S t ) 02 x -- -- KrjTfl(t'-- - s') (d?(u, t)) (18) 
x(t) X(s) m 

In fact, for this simple case, the differential operator in (17) commutes with 
itself at different times, so that ordinary cumulants are adequate. If the 
differential operator in (17) had been noncommuting at different times, then 
even its Gaussianness would not have permitted an exact expression involving 
only the second cumulant. (4) Higher order, ordered cumulants would have 
been required, and, in fact, are going to be discussed in Section 5 when the 
non-Gaussian case is discussed because non-Gaussianness also requires 
higher order cumulants. 
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In (18) the s-integration involves an integrand that is an exact differential, 
so that 

ds-~  dt " d s -as as '  x ( t  - t ' )  x(s  - s ' )  ~(t '  
x( t )  x(s)  - s ' )  

_ K~_r (~ as' x(t  - s ' )  a f s  at '  x(t  - c )  _ . ,  
m 30 x(t) d t _  "X~) [stt - s') 

1 K~T d (~ . ,  f]  X(t - s') x( t  - t ') 
. . . .  2 m d t )  oas __d t '  -X~) x(t) flit', - s ' )  

1 K B T  d 
- 2 m at [X-2(t)A(t)] (19) 

where the last line defines A(t),  which can be rewritten as 

A(t)  = d r  de  X('~)fl(cr - r)X(~r ) (20) 

Adelman <1~ has shown that 

f2 ~ A ( t )  = 2x( t )  a~ ~(~ - t )x(~)  --- - 2 x ( t ) ~ ( t )  (21) 
dt 

because the Laplace transforms of 2(0  and f0 t d~ X(e)~(~ - t) are, respec- 

tively, z2(z) - 1 and 2(z)t~(z) - 1 - z2(z) because (4) implies ~(z) = 2-1(z) 
- z. The solution to (21) is 

A(t)  = 1 - x2(t) (22) 

which is compatible with X(0) = 1 and (20). Therefore, 

d IX- 2(t)A(t)] = - 2 ;~(t) (23) 
x~(t) 

Putting (23) into (19) and then into (18), we obtain 

a KBT 2(t) ~2 
~-~ <de(u, t)) = m x3(t) Ou 2 (de(u' t))  (24) 

Returning to (13), we obtain 

g(t) Ou [u(p(u, t))] + exp - u In x(t) ~ (de(u, t)) 

_ 2(t) ~ KBT 2(t) [ O ] 
x(t) Ou [u<p(u, t))] m )ca(t) exp - Fu u In x(t) 

x ~-~ exp + ~u u In x(t) (p(u, t)) (25) 
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I d e n t i t y  2 : 

exp - ~u u In x(t)_ ~ exp u In x(t) = x~(t) - ~  

Proof: 

(26) 

= . = o ~  TuU'" ~u ~ 

82 cq2 
= ~" (-- 1)" [ln x(t)]"(-2)" = x~(t) (275 

~ o  n! ~ u  ~ ~ 
To get line four of (27), [(8/~u)u, �9 ]" 82/8u ~ = ( -  2)" 82/8u 2 was used and is 
easily verified. 

Consequently, Eq. (25) becomes 

~t (P(u ' 2(t) c3 KBT ~(t) 82 t))  x(t) 8u [u(p(u, t))] m x(t) 8u 2 (p(u, t))  (28) 

or equivalently, using (8) and van Kampen's  lemma, we obtain 

8 P(u, t) = ~(t) ~ r a T  ~ . .  82 P(u, t) (29) 8-7 Tu [ue(u, t)] + T t~t) 

which is a Fokker-Planck equation for P(u, t). 
Especially notice that (29) contains t-dependent coefficients in/~(t). This 

means that (29) describes a nonstationary, Gaussian, Markov process 
because (29) is a nonstationary diffusion equation, ~5) and its explicit solution, 
which is given below, can be shown to satisfy the nonstationary Chapman-  
Kolmogorov equationJ ~) Another way to express this is to note that (29) 
is Kolmogorov's  forward equation C~5) for a nonstationary Markov process 
in which the diffusion coefficient is t dependent but not u dependent. 

By direct substitution into (29) it can be seen that the solution to (29) 
with P(u, O) = 8(u - u(0)) is given by the nonstationary Gaussian condi- 
tional probability distribution 

P(u, t) = [2r -~/2 exp [ -  [u -2a2(t)x(t)u(0)]2.]] (30) 

in which as(t) satisfies the equation 

1 d cr2(t) 5c(t) [~r2(t) - -K-~] (31) 
=x-63 
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with initial condition or2(0) = 0. The solution to (31) is 

a2(t) = ~-~[1 - x2(t)] = KBTA(t)rn (32) 

Equations (30) and (32) provide the complete stochastic description of  the 
solution to (1) in the Gaussian case. Notice also that ifx(t  ) becomes negative, 
as discussed earlier, no difficulty arises. 

Before proceeding to the non-Gaussian case, which is given in Section 
5, a two-component case will be presented to illustrate the fact that none 
of the preceding considerations are limited to one-component equations. 
These considerations will occupy Section 4. 

4. " N O N - M A R K O V I A N "  B R O W N I A N  OSCILLATOR 

The traditional example for a multicomponent Langevin equation is 
the Brownian motion of  a harmonic oscillator, (z2'14~ If oJ denotes the un- 
perturbed frequency of the oscillator, rn its mass, p its momentum, and 
y = mwx,  where x is its position, then the equations of motion can be written 
in terms of  a two-component vector: 

in which fl(t - s) is the memory kernel and f ( t )  is the stochastic driving 
force. As in the example of Sections 2 and 3, <f(t)> = 0 and ( f ( t ) f ( s ) )  = 
KBTmfl(t - s). It will also be assumed in this section that f ( t )  is Gaussian. 
The non-Gaussian case will be discussed in Section 5. Using Laplace trans- 
forms, we obtain 

i 

~ ( z ) !  

It is easily verified using the matrix adjoint method of construction that the 
inverse of the matrix in (34) is given by 

+ ~ z + ~(z)  - ~  z[z  + ~(z) ]  + ~o 2 

Let xp(t) be defined through its Laplace transform by 

~ , ( z )  - [z 2 + z~(z )  + ~o2] - ~  (36)  

Because in this case xp(O)--O, z2p(z) is the Laplace transform of  2p(t). 
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Therefore, (34) can be inverse-Laplace-transformed into 

p(t)] \ - oax,(t ) ~(t)  ] \p(O)] 

[,,, f~ x, , ( t  - s ) r ( s )  dq (37) 
+ ~ f~ 2,(t -- s)f(s) ds J 

It also follows that 2p(0) = 1, which guarantees the initial value requirements. 
Equations (33) and (37) also imply 2p(0) = 0. 

To perform the Adelman transformation on Eq. (33), it is convenient 
to rewrite (37) as 

p(t)! \ff,(t)] 

which defines M(t) and flu(t) and ff~(t). Therefore 

~'y(t) (P~(t)]] 
p ( o ) ,  = - 

and 

d ~y(t)~ = lfCl(t)(y(O)~ d (Fu(t)~ 
\p(t)! \p(O)] + -~ \F~(t)! 

Substitution of (39) into (40) gives 

(38) 

(39) 

(4o) 

(42) 

(43) 

because (d/dt)[M(t)M- l(t)] = 0 and 

(d/dt)[M(t)M- l(t)] = l(/l(t)M- 1(0 + M(t)(d/dt)M- t(t) 

which together imply the identity for t-dependent matrices 

(d/dt)M- l(t) = - M -  l(t)l~'I(t)M- ~(t) 

Therefore, (41) and (42) provide the two-component analog to (8). 

= I(t,M(, s,(;,) 
d~(t)J 

\p(t)J \p(t)! \Fp(t)! ~ \Pp(t)! 

1-. [y(t)\ ~Cu(t)~ 
= If l( t )M- (t)~p(t)) + \G~(t)] (41) 

in which the last line defines Gu(t) and G,(t). An explicit calculation shows 
that 
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To get the conditional probability distribution determined by (33) and 
denoted by P(y ,  p, t) with the initial condition P(y ,  p, O) = 8(y - y(0)) 
8(p - p ( 0 ) ) ,  van Kampen's lemma is used again. Beginning with a phase 
space density p(y, p, t), the continuity equation in this case may be written 
as 

0-~ ~ p(y'  p' t) = - 8--~b . [l~I(t)M-l(t)xp(x, t)] - ~xx �9 [8(t)p(x, t)] (44) 

in which x denotes the two-component vector (Y],  and (8/Ox) �9 denotes the 
\ /P  

two-dimensional divergence operator. Equation (44) is a multiplicative 
stochastic process, and van Kampen's lemma asserts that (p(x, t ) )  - P(x ,  t). 
To get (p(x, t)), a sequence of  identities that parallels the development in 
Section 3 will be used. 

Define r t) by 

Kx, t)=(Texp[-fi~.M(s)M-l(s)xds]}f(x,t) (45) 

in which T exp[- �9 �9 ] denotes the time-ordered exponential, <4) which is required <___ 

here because the operator (~/0x) �9 ~ l ( s )M-l ( s )x  does not commute with 
itself at different times. This is the primary complication a multicomponent 
process creates. If  B(t) is an arbitrary time-dependent operator that does not 

commute with itself at different times, then the inverse o f T  exp[f~ B(s) ds] 

is given by T e x p [ -  f~ B(s) ds], in which it must be noticed that the time 
ordering is in the reversed sense. Therefore, 

{r (s 1}~ a t a . I~I(s)M_I(s) x ds ~-~ e~ r t) = - exp Fxx 

x { T e x p [ -  f ]  ~x .  /Vl(s)M-l(s)x asJ}~(x, t) (46) 

Ident i ty  3 : 

[fl ]t exp Fxx " l~?I(s)M-~(s)x ds Fx 

= ~ ~--~ �9 M-~( t )M(t  - s)  s) ds (47) 
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Proof: 

0 Nl(s)M-l(s)x ds] x T e x p [ -  f l  ~-- ~ �9 

�9 19I(s)M-i(s)x, ]ds}f~ G(t) . _ _  - (48) 

where the right-hand side of this equation contains the time-ordered exponen- 
tial of a commutator operator denoted by [(0/~x) �9 lfl(s)M-l(s)x, -]. The 
first-order term in this exponential contains 

[~x 0 ] O . lqd(s)M-~(s)G(t) (49) �9 19I(s)M-l(s)x, ~-~- G(t) = - ~---~ 

This makes it clear that each higher order commutator will contain only the 
first-order (O/ax) �9 factor, although the time-dependent matrix product will 
become increasingly complicated. However, the result, to all orders, may be 
expressed by the identity 

t a . a ( t )  
 exp(fo F x 

O exp l~l(s)M- 1(s) ds t) (50) 
8x 

Note that even though (48) begins with both time-ordering senses represented, 
only one sense of time ordering is required for the commutator exponentials. 

The expression T e x p [ - f ~  lgr can be simplified con- 
siderably by noting that at t = 0 it gives the 2 x 2 identity matrix which is 
identical with both M(0) and M-  1(0), and it satisfies the first-order differential 
equation 

= - ( T e x p [ -  f~ NI(s)M-l(s)dsl)lgl(t)M-l(t) (51) 

wherein the derivative of the exponent appears on the right because the 
exponential is ordered to the right as indicated. This is identical with Eq. 
(43) for the derivative of M-~(t), and it was already noted that the ordered 
exponential agrees with M-1(0) at t = 0. Therefore 

Using (52) in (50) and using (42) gives the right-hand side of (47). 
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Therefore, (46) becomes 

~-~ r t) = - dt ~x" M - l ( t ) M ( t  - s) f(s) ds r t) (53) 

Because ( f ( t ) )  = O,f(t) is Gaussian, and the differential operator 

0---x" M - l ( t ) M ( t  - s) s) ds 

commutes with itself at different times, it follows that the second cumulant 
is exact in this case, as in the case of free Brownian motion, which was 
discussed earlier, and it implies 

o-~ <r t)> 

t t / 0 

"~ ( ; ) )  x N -~x " ds' M -  ~(s)M(s - s ') 1) (r t ) )  

(of  (;) = Fx " ds' M - l ( t ) M ( t  - s ') ,) 

x ~} ~x" dt I M -  ~(t)M(t - t') ') (r t ) )  (54) 

The second equality follows from the fact that the integrand in the first is 
an exact differential with respect to s-integration. The last equality of (54) 
can be treated in parallel with 09)  to give 

f2 (,2) 2 dt ~x" ds' M - l ( t ) M ( t  - s') ,) 

;2 (; )) x -~ - dt' M-~(t )M(t  - t ')  ,) (r t ) )  

1 K B T m d { ~  f f  f l  = "2 -~ -~x" ds' dt' M-~(t )M(t  - s ')  

~ t x D(s'  -- t ')M*(t - t ' ) [M- l ( t ) ]  * �9 7xx (r t ) )  (55) 

in which the dagger denotes the transpose of  a matrix and D(s' - t 1) is 
defined by 

K~TmD(s- t ) - - -  ( ( f (Os)) (0  f(t)) ) = (~ 0 (56) 
K~Tmfi(s- t), 
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Define A(t) by 

A(t) = d s  d r  M(s)D(r - s)Mt(r) (57) 

Equation (54) can now be written in the form 

~-~ ( r  t ) )  = g K~Tm ~ ~ �9 M - l ( t ) A ( t ) [ M - l ( t ) ]  * �9 ~ ( r  t ) )  (58) 

which parallels the final line of (19). 
To continue the parallels, the following equation for i~I(t) is required, in 

(~ o): 
f; ( d / d t ) M ( t )  = M ( t ) a  - M(s)D(t - s ) d s  (59) 

This equation can be derived algebraically by looking at the Laplace trans- 
forms of each term, which gives 

( - o J  2 coz ) 
1VI(t)  - +  zl fcI(z)  - M(O) = - o~z - ~o 2 - z t~(z)  { z [ z  + / ~ ( z ) ]  + ~o2} -1 (60) 

( -o~  o~[~ + ~(~)]~{~[z M ( t ) ~ - +  iVl(z)~2 : + /~(z)] + ~o2} -1 
- - o g z  - - o J  2 ] 

- M(s)D(t - s )  d s  (61) 
o 

--,-~(z)f~(z) = -z~(z) ]vtz + ~(z)] + (62) 

in which the right-hand side of (35) is used for 1Vl(z) and in which 

has been used in (62). 
With (57) and (59), it is possible to get a much more revealing expression 

for A(t): 

s s ( d / d t ) A ( t )  = M(t) d r  D(r - t)M*(r) + M(s)D(t - s ) d s  M*(t) (63) 

From (59) it follows that 

f2 (d/dt)M*(t) = - a M * ( t )  - D ( t  - s )M*(s )  ds (64) 
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because ~2 is antisyrnmetric and D is symmetric as matrices. D(t - s) is also 
symmetric as a funct ion of  s and t. Therefore,  (59) and (64) provide 

" D(t  - r )M*(r)  = - $ZM*(t) - (65) dr lOW(t) 
and 

f[M(s)D(t - s ) =  M(t)gZ - (66) ds M(t) 

When (65) and (66) are placed in (63) the result is 

fit(t) = M ( t ) [ - ~ M * ( t )  - lgP(t)] + [M(t)~2 - /gI(t)]M*(t) 

= - (d/dt)[M(t)Mt(t)] (67) 

This equat ion is trivially integrated with the initial condit ion A(0) = 0 and 
gives 

in striking parallel with (22). This means that (58) can be written as 

1 d ( O  O} x 0-~ <,b(x, t)) = g K~Tm N N �9 M-l(t)[M-l(t)]* - N <4( , t)) (69) 

Therefore,  (45) implies 

_ 8_ [lfCI(t)M_l(t)x(p(x, t ))]  ~ ( p ( x , t ) )  = ~ x  

+ r e x p [ _  f0 ~ . ' 8  ~(s)M-l (s )x  as] ~ <4(x, t)> 

= - ~--- �9 [lqr t ))]  
Ox 

t 0 l~l(s)M_l(s)xds] + ~I KBTmTexp[- fl- ~ 
d x ~ t { -~ .  M-I(t)[M-l(t)]*. ~---~} 

�9 { T e x p [ f / ~ x '  Iqcl(s)M-~(s)xds]) (p(x' t)) (70) 
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Ident i ty  4:  

4 
x d ~ . ~3 

~ f  Fx " M-l(t)[M-l(t)]t  ~--xt' T e xp l f i~ x"  lCFl(s)M-~(s)xds 1 

a 
= - 2  Fx " i~I(t)M-l(t) " ~ (71) 

Proof. Closely related to (48) is the relation 

t ~ lql(s)M_l(s)xds]  oxp[-fi  
d a "* ~ 19l(s)M_~(s)xds] x ~ { ~ x .  M- ' ( t ) [M- ' ( , ) ]*.  ~x)"  Texp[ j  o ~--x' 

= T e x p f - ~  [ ~  x �9 l~I(s)M-'(s)x, ,]ds) 

d 
x ~{~-~.  M-'(t)[M-I(t)]  ' .  ~x} (72) 

which involves the ordered exponential of a commutator operator. The 
first-order term in this exponential contains 

d 3 .  

d e . iqd(s)M_~(s)M_~(t)[M_X(t)]t, x 

. M-X(t)[M-X(t)]*[M-X(s)]*l~I*(s) -~ +-~x 

- dt ~-x" lql(s)M-l(s)' M-l(t)[M-X(t)]* "~'x 
r 

where the second equality defines the operator {B(s), �9 }, to be given by 

{B(s), .},E - B(s)E + EB*(s) (74) 

in which B(s) and E are arbitrary matrices. Note that the result in (73) 
contains exactly two orders of ~/~x. Therefore, the entire exponential on the 
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right-hand side of (72) can be written as 

a d a . 0 
T e x p ( -  fo [ 7x " 19I(s)M-l(s)x' "]ds) ~ (Tx �9 M-l ( t ) [M-l ( t ) ]  t b-x) 

= 0x " exp {19I(s)M- ~(s), �9 }, ds {M- l(t)[M- ~(t)Jt} �9 ~--~ 

(75) 

This relation is closely related to (50), and the exponential on the right-hand 
side may be simplified considerably, in parallel with (52), 

Texp[  {l~l(s)M-l(s), .}, ds] = M( t ) .  Mr(t) (76) 

because both sides agree at t = 0 and they both satisfy the first-order 
differential equation 

(d/dt)U(t) = {l~l(t)M- 1(0, U(t)} t (77) 

as is readily verified. Using (43) and (76) in (75) gives 

T e x p [ f l  {M(s)M-l(s), .},ds] d{M-l(t)[M-~(t)]*} 

= - M(t){M- ~(t)/~l(t)M - ~(t)[M- ~(t)]* 
+ M-l(t)[M-l(t)]*lCCl*(t)[M-l(t)]t}M*(t) 

= - l~l(t)M- l(t) - [M- l(t)]*l~l*(t) (78) 

It is also so that 

__.8.~x {l~l(t)M-~(t) + [M-z(t)]*l~*(t)} "Fxx = 2 F x '  N/(t)M-l(t)  ' Fxx (79) 

Using (79) and (78) in (75) and (72) justifies Identity 4. 
Consequently, (70) becomes 

8 �9 [i~/(t)M- ~(t)x(p(x, t))] 0-~ ( p ( x ,  t ) )  = -8--~ 

- KBTm -~x " l~l(t)M-~(t) " ~-x (p(x, t )  (80) 

Using van Kampen's lemma provides the Fokker-Planck equation for this 
Brownian oscillator, which is 

8 P(x, t) = 8x8 . [lfci(t)M_Z(t)xP(x ' t)] 

- KBTm ~x" /~I(t)M-l(t) " ~x P(x, t) (81) 
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Notice that the matrix coefficients l~l(t)M-l(t) are t dependent, so that (81) 
describes a nonstationary Gaussian process, which is consequently also a 
nonstationary Markovian process. 

It may be verified by substitution in (81) that the solution satisfying the 
initial condition P(y ,  p,  O) = 8(y - y(0)) 8(p - p(0)) is 

P(y ,  p, t) = (2~rKr~Tm)- l{det[A(t )]} -112 

[x - M(t )x(0) l*A-l ( t ) [x-  M(t)x(0)]) (82) 
1 

• exp 2KBTm 

in which A(t )  is given by (68) and x(0) = (y(O)] The notation det[A(t)] 
\p(o)/" 

denotes the determinant of the matrix A(t) .  Equation (82) provides the com- 
plete stochastic description of the "non-Markovian" Brownian oscillator. 
Note that the result is in fact a nonstationary, Gaussian, Markov process. 

5. N O N - G A U S S I A N  P R O C E S S E S  

In order for the setting for the non-Gaussian case to be as general as 
possible, it should be noted that most of the details involved in the analysis 
of the "non-Markovian" Brownian oscillator did not really depend upon 
the explicit 2 x 2 matrices used but instead depended upon only quite 
general matrix algebraic properties, which apply equally well to systems 
with more than two components. Specifically, Eq. (33) is a special case of 

f; (d/dt)x(t)  = ~x(t )  - D(t - s)x(s)ds + f( t )  (83) 

in which x(t) denotes an n-component vector, ~ denotes an n x n anti- 
symmetric matrix, and D(t - s) denotes a symmetric, n x n matrix "memory 
kernel." The process is driven by a stochastic vector force ~(t), which will 
generally have n components. The fluctuation-dissipation relation is now 

( f( t ) f (s)  t)  ---- KBTD(t -- S) (84) 

The Adelman transformation converts (83) into 

~d x(t) = I~I ( t )M- l ( t )x ( t )  + M(t) ~ M-l ( t )M(t  - s)f(s) ds (85) 

in which M(t) is defined through its Laplace transform l~I(z), which is given by 

~l(z) = [zl - f l  + f)(z)] -1 (86) 

where 1 is the n • n identity matrix and 13(z) is the Laplace transform of 
D(t - s). It is now possible to proceed in the Gaussian case from (44) to 
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(58) without alteration because those steps in the 2 x 2 case did not use the 
explicit 2 x 2 nature of the matrices involved. All that must be shown is 
that Eq. (59) can be justified for the n x n case because Eqs. (60)-(62) 
explicitly involve the 2 x 2 case matrices. The analogs of (60)-(62) are 

ICcl(t)-+ zIfcI(z) - 1 = z[zl - ~2 + f)(z)] -1 - 1 
= [zl - g + b(z)]-l[~2 - b(z)] (87) 

M ( t ) ~ - - ,  ~ ( z ) ~  = [zl - ~ + D(z)]-W~ (88) 

- M(s)D(t - s)ds-+ -lfCI(z)f)(z) = - [ z l  - ~ + f ) (z) ] -q)(z)  (89) 

Therefore, it clearly follows that 

J; (d/dt)M(t) = M ( t ) a  - M(s)O(t - s)ds (90) 

Now one may proceed from (63) all the way to (82) without alteration in the 
argument, provided that the left-hand side of (82) is written as P(x,  t), in 
which x denotes an n-component vector, and the right-hand side contains 
(2~'KB T) - ~/2. 

For the non-Gaussian case, the critical step is the step from Eq. (53) to 
Eq. (54), or their analogs in the n-component case. The second cumulant 
will no longer be exact and higher order cumulants will be required. Explicit 
combinatorial formulas exist (4~ for all of  the higher order cumulants, so that 
it is possible to write out explicit formulas that generalize Eq. (54). Because 
(f( t ) )  = 0, only even-order cumulants will be nonvanishing. Because the 
differential operator 

-d-t  8"-x " M - l ( t ) M ( t  - s)f(s) ds 

commutes with itself at different times, only ordinary cumulants are required 
and ordered cumulants simply reduce to ordinary cumulants. Whereas the 
second cumulant that occurs in (54) is second order in 8/Sx, the nth cumulant 
will be nth order in 8/~x, as was suggested by Adelman. (~) The analog of 
(54) will have the form 

8~ (q~(x, t ) )  = G~2")(t)@(x, t ) )  (91) 

in which G~2"~(t) denotes the 2nth cumulant and G~m(t) is identically given 
by (54). In order to subsequently get the equation for (p(x, t)), it will be 
necessary to compute the analog of Identity 4 for the higher cumulants 

(+_Texp[-~s ~---~. lqr f~ ~-~--~. Iqr 
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Because G~2")(t) is of order 2n in 0/~x, the expression above will also turn 
out to be of order 2n in a/~x because the exponentials contain the combination 

(~/0x)- l~l(s)M- l(s)x 

The final result will always involve infinitely many higher cumulants, so that 
approximations through truncation of the cumulant series will be required. 
Closed-form solutions to these generalized Fokker-Planck equations that 
possess higher than second-order derivatives in x are not known for either 
the entire cumulant series or for its truncations. However, the generalized 
Fokker-Planck equations readily generate equations for the moments of the 
original stochastic process x, and these moment equations usually permit 
elementary solutions. 

It must be emphasized that for the Gaussian case, Eq. (29) for the free 
Brownian motion has been obtained by several others 3 as well as by 
Adelman, ~1~ and that Eq. (81), in a somewhat different but equivalent form, 
has been obtained by Adelman. ~1~ However, the methods used here also 
readily develop into a description of non-Gaussian processes. Although that 
description is perhaps combinatorially complicated, it is nevertheless known 
explicitly34) The virtues of the multiplicative stochastic process approach, 
with its use of ordered and ordinary cumulants, may be exhibited in many 
other contexts as well. Moreover, the use of time ordering and related 
operator calculus techniques, which usually appear only in quantum mechani- 
cal contexts, should also be noted. These methods enjoy a broad applicability 
in classical contexts, as has been exhibited here. 

It is to be especially noted that for the Gaussian cases the Adelman 
transformation, in its extended, stochastic form, results in a nonstationary 
Fokker-Planck equation, which describes a nonstationary, Gaussian, 
Markovian process. This is in spite of the fact that projection operator 
techniques that give rise to the "memory kernel" equations have led many 
authors ~1) and other workers to refer to those processes as non-Markovian. 
However, all the memory kernel really does is produce a nonstationary, 
Markovian process3 ~s) The methods of multiplicative stochastic process 
analysis make this fact especially transparent and suggest that these methods 
are more fundamental. The point will be reinforced in other contexts in 
subsequent papers. 
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